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Using quantum field theory in black hole-type spacetimes with horizons, which 
includes all the black hole solutions and also some other interesting solutions in 
general relativity, we obtain Hawking's thermal spectrum of Dirac particles near 
the event horizon as well as the cosmological horizon of the spacetime. 

1o INTRODUCTION 

Hawking's investigation of quantum effects (Hawking, 1974) interpreted 
as the emission of a thermal spectrum of particles by a black hole event 
horizon has been extended by Gibbons and Hawking (1977) to spacetimes 
with cosmological event horizon. The de Sitter spacetime with cosmological 
event horizon has attracted renewed interest as a model of the inflationary 
scenario of the early universe. The thermal radiation in the spacetimes with 
event horizon as well as cosmological horizons has been studied by various 
authors (Ahmed, 1991; Dianyan and Huiya, 1985; Gen, 1985). The thermal 
radiation in NUT-Kerr-Newman-de Sitter spacetime (Ahmed, 1991) is inter- 
esting in that the thermal radiation is possible even in the NUT spacetime, 
which may be thought unphysical. 

In this paper we study the thermal radiation in the spacetime with 
magnetic monopoles which possesses an event horizon as well as a cosmologi- 
cal horizon. This study will be interesting in that reasons to believe magnetic 
monopoles exist have been given on the grounds of the symmetry that they 
would introduce in the field equations of electromagnetism. This monopole 
hypothesis was propounded by Dirac relatively long ago. The ingenious 
suggestion by Dirac that the magnetic monopole does exist was neglected 
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due to the failure to detect such a particle. However, in recent years the 
development of gauge theories have shed new light on this. 

2. T H E  B A C K G R O U N D  S P A C E T I M E  

We consider the spacetime 

ds2 = Aoo d02 + dr2 + 
E-2A0sin20 

+ ~ z  (dt - A d~) 2 

where 

= r 2 + (n + acos0)  2 

A z 
A0= 1 + ~ - a  cos20 

A ~ = ( r  2 + a  2 + n  z) 1 --3-- (r2 

A a2 E = I + ~ -  

p = r 2 + a 2 + n 2 

A = a s i n Z 0 - 2 n c o s 0  

+ 5n2)] - 2(Mr 

(a dt - p de:I)) 2 

(1) 

+ n 2) + ~2 + g2 

Besides the cosmological constant A, the spacetime given by (1) 
possesses five real parameters: the mass parameter M, the NUT (magnetic 
mass) parameter n, the angular momentum per unit mass parameter a, the 
electric charge parameter e, and the magnetic monopole parameter g. 

We call the metric given by (1) the NUT-Kerr-Newman-de Sitter metric 
generalized with the magnetic monopole. Further, we may call the metric 
the generalized hot NUT-Kerr-Newman (GHNUTKN) metric, since the cos- 
mological (de Sitter) parameter has been interpreted as being hot (Gasperini, 
1988). For A = n = g = 0 the GHNUTKN metric reduces to the well- 
known Kerr-Newman metric. 

3. DECOUPLED EQUATION 

Kamran and McLenaghan (1984) obtained the separation of the Dirac 
equation in a general background. From Kamran and McLenaghan's equation 
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in the proper limit, we obtain the radial decoupled Dirac equation for the 
electron in the GHNUTKN spacetime as follows: 

_ _ [  d i m A m ] d R ( r )  
Ar dZR(r) + ~ (4/-~) h + imr dr dr 2 

+ E2KZAT1 - h2 - m2r2 + )t + im--------~ -~r R(r) = 0 

eQr 
K = r 2 ~ -  ~ - - -  (2) 

E 

where o~ is the energy of the Dirac particle, a is its projected angular momen- 
tum, h is the separation constant, and m and Q are the mass and the electric 
charge of  the Dirac particles, respectively. 

With the coordinate transformation 

d Ar d 
dP [3 dr 

(3) 

where 

[~ = r 2 + (a + n) 2 

equation (2) can be reduced to 

~2 dzR ( A; !m~3Ar i dR 
~r z + 2rAt -  ~ 2 h + imrJ-~r 

A f EzKz hz mZr 2 - + 

+ i2EroJ - ieQIR = 0 ] 

reEK iEKA 'r 
+ imr 2Ar 

(4) 

where the prime denotes differentiation with respect to the argument. 
Near the horizons Ar -= 0, equation (4) reduces to 

d-- 5- + E 2 R = 0 (5) 

Near r = r+, the solution of the wave equation (5) can easily be found to be 

R -- exp[_iE(to - too)] ~ (6) 

where (Cabibbo and Ferrari, 1962; ROhrlich, 1966) 
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(a + n)Zto + oL eQr+ 
+ (7) too = rZ+ + (a + n) 2 E[r2+ + (a + n) 2] 

and r§ called the event horizon, is the smaller o f  the two positive values o f  
r at which A r = 0, provided the roots are real (i.e., 1/A > M 2 > a 2 - n 2 
+ e 2 -F g2). The larger positive value o f  A~ = 0 denoted by r++ represents 
the cosmological  horizon. 

Now we can write the radial wave function as 

where 

�9 ~ = e x p [ - i t o ( t  • rl)] 

E(to - to0)~ 
F 1 - -  

t o  

We resolve xIr into ingoing and outgoing waves as 

xIr~ - e x p [ - i t o ( t  + PI)] 

~out ~ e x p [ - i t o ( t  - ~1)] 

Introducing the Eddington coordinates 

V = t + f ~  

we obtain 

~ - exp( - i tov)  

xIf~ ~ exp [ - i t ov  + 2iE(to - to0)P] 

Near r = r+, equation (3) can be integrated to give 

1 
= - -  ln(r - r+) 

2EK+ 

where 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

A 
K+ = 6E[r  2 + (a + n) 2] (1+ - r++)(r+ - r_)(r+ - r__ )  (16) 

is the surface gravity o f  the event horizon o f  the G H N U T K N  spacetime and 
r_, r__ are the other two roots of  Ar = 0. Just outside the event horizon 

XIf~ ~ e-i~v(r -- r+) (uK+)(~-~~176 (17) 

We now extend the outgoing wave outside the horizon to the region 
inside. Since on the event horizon, the outgoing wave function is not analytic 
and cannot be straightforwardly extended to the region inside, it can be 
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continued analytically to the complex plane by going around the horizon. 
We go along the lower semicircle of radius I r - r+l, where the variable is 

I r -  r+le = (r+ - r)e 

Hence inside the event horizon 

~ o u t  ~ e - i~v(r+ _ r)(i/.+)(o-OO)e(~/~+)(o~-oo) (18) 

Introducing the step function 

{~ f~ x - > O  (19) 
y ( x )  = for x < O  

we can generally write the outgoing wave function as 

~om = Nr{ y ( r  - r+)~~ - r+) 

+ y(r+ - r)~r~ - r) exp{(Tr/K+)(~o -- o)0)} (20) 

where "tIJr~ is the normalized Dirac wave function. 
Expression (20) describes the splitting of ~out into two components: 
(a) A flow of positive-energy particles of strength N 2 outgoing from the 

event horizon. 
(b) A flow of positive-energy particles propagating in the GHNUTKN 

background gravitational field in reverse time, since inside the event horizon, 
r represents the time axis due to the interchange of time and space. This can 
be interpreted as a flow in time of negative-energy antiparticles ingoing 
toward the singularity region. This shows that the wave function near the 
event horizon is such that there is creation of particle-antiparticle pairs 
(Deruelle and Ruffini 1975a,b). 

Obviously, from the normalization condition, we have 

< (bout ~out3 ~___ N}{exp[(2W/K+)(~o -- o~0)] + 1} = 1 (21) 
= r  , ~ P "  / 

or  

where 

Nr z = {exp[(2'rr/K+)(co -- to0)] + 1} -1 

= {exp[(I/KBT+)(to- ~o0) ] + 1} -1 (22) 

K§ 
T, - (23) 

2"rrKB 

T§ is the temperature of the region inside the event horizon; KB is Boltzmann's 
constant. Equation (22) is the main formula demonstrating the emission of 
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a thermal spectrum of Dirac particles 
GHNUTKN spacetime. 

Following in a similar way, we have 

by the event horizon of the 

K++ 
T++ - (24) 

2"rrKB 

where 

A 
K++ = 6E[rZ++ + (a + n) 2] (r++ - r+)(r++ - r_)(r++ - r__)  (25) 

is the surface gravity of the cosmological horizon. 

4. DISCUSSION 

In this study we observe that Hawking's thermal spectrum can be found 
in spacetimes with magnetic monopoles provided the horizons exist. But in 
the case that the number of magnetic monopoles in a celestial body of the 
order of galactic nuclei may be very large and can be compared with the 
gravitational mass of the source in the gravitational effect (Deyu et al., 1984; 
Qiuhe and Yongjiu, 1985; Yongjiu and Qiuhe, 1985) there actually exist no 
horizons. Thus we conclude that Hawking radiation in this spacetime is 
possible only if the mass of the celestial body is greater than the mass of 
the monopoles present. 
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